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Abstract. The Mandelstam-Tamm time-energy inequality is exploited to obtain a trans- 
parent expression of the lifetime-energy uncertainty relation for decaying quantum 
systems along with some useful features of the quantum non-decay probability. 

It is frequently stated that, for a metastable quantum state, the time-energy uncertainty 
relation (TEUR) is manifested in the form of an equality connecting the lifetime and 
‘width’ (Landau and Lifshitz 1977, Bauer and Mello 1978). Basically, such an assertion 
follows from the well known treatment of decay due to Weisskopf and Wigner (1930) 
where the width at half-maximum of the Lorentzian line shape was related to the 
average life of the associated exponential decay. But, since the quantum non-decay 
probability can never be purely exponential in nature (Ersak 1969, Fonda et a1 1978), 
unless there exists some kind of openness, it seems desirable to have an explicit form 
of the TEUR involving the lifetime for a closed, decaying quantum system. Recently, 
Bauer and Mello (1978) analysed the problem in detail and concluded that neither 
the formulation of the TEUR due to Mandelstam and Tamm (1945) nor the one 
proposed by Wigner (1972) is suitable to arrive at the lifetime-width relation for a 
decaying state; rather, they opined, to achieve this end, one has to talk of ‘spreads’ 
in terms of ‘equivalent widths’ (Bauer and Mello 1976). However, i t  is difficult to 
understand why the width of the line shape should be so fundamental a quantity to 
appear in the TEUR, keeping aside the rather unfamiliar measure of spreads involved. 
So, we feel obliged to reinvestigate the case. To proceed, we shall follow the 
Mandelstam-Tamm (MT) scheme. 

The primary difficulty with the MT inequality (Messiah 1976) 

is that the time TAi, though it is said to refer to some time characteristic of the 
observable corresponding to the operator Ai, does not correspond to the physical time 
t of evolution of the system with respect to some arbitrarily chosen time of its 
preparation in some particular ‘packet’ state; it possesses merely the dimension of 
time. Hence, although we can, in principle, find out the shortest time TA, from among 
the set of observables {Ai} for the system, TA, cannot probably ‘be considered as a 
characteristic time of evolution of the system itself’ (Messiah 1976). It is also under- 
standable now that the MT time would not correspond to the lifetime for a decaying 
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state; an explicit demonstrative calculation led Bauer and Mello (1978) to the same 
conclusion. 

We know that a quantum system, prepared at t = 0 in some non-stationary state 
14), evolves causally according to the equation 

14,) = e-iHr'*14), 4 E D W ,  (2) 

where H,  # H ( t ) ,  is the Hamiltonian of the system. If ( 4 )  is expressible as an integral 
over the continuous energy-eigenstates of H the system would decay (see e.g. Davydov 
1976) and ihen the quantity 

Pl = l(4 I4Jl2 (3)  

would define the so-called quantum non-decay probability. It is easily seen from (2) 
and (3) that P, has to be an even function of time, a property which alone excludes 
immediately not only the possibility of an exponential decay (see also Fonda et a1 
1978) but also other monotone decreasing odd functions from being P,. Now, choosing 
Ai in the form of a projector 

Ai = I4)(4I, (4) 

[Pl(l - P,)] ' / ' / ldP,/dtl~ h/2AE. ( 5 )  

we find from (1) the inequality 

Remembering that A E  has to be finite (for llH4I) is finite, 4 E D ( H ) ) ,  the above 
inequality shows several interesting features to be discussed in what follows. 

Firstly, rearranging ( 5 ) ,  we obtain 

IdPJdtl s (2AE/h)[P,(l -P,)]''' (6) 

which marks the time Th when P, = i, i.e. the half-life, as a significant time, for then 
only the right-hand side attains its maximum value so that 

ldP,/dtl s AE/h  (7) 
always holds; the equality in (7), however, may hold only at Th. The message of (7) 
is that no unstable quantum system can decay completely within a time h / A E .  This 
time, though it is a rather crude estimate (see below), clearly establishes a limit to 
the instability of a decaying quantum system in the time sense. 

Secondly, from (6), we obtain some characteristics of quantum decay for different 
regions of time (note that as t + 0, P, + 1 and as t + 03, P, + 0): 

IdP,/dt/ = 0, t = 0, (8a ) 

dP,'"/dt s A E / h ,  t + 03, (8C) 

d cos-' PJdt s 2AE/h, t + 0, (86 1 

and, in general, 

d cos-' P:"/dt s AE/h,  0 s t 6 03. ( 8 4  
These results are likely to be of interest in small- and large-time studies of the 
behaviour of P,. 

Thirdly, integrating ( 8 d )  directly, one obtains 

t 2 ( h / A E )  cos-1 P:" (9) 
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so that the minimum-time limit, stated earlier, turns out to be precisely lrh12AE. Also, 
(9) leads straightforwardly to the inequality 

PI 2 cos2(AEt /h) ,  o s  t s l rh /2hE,  (10) 

obtained also by Fleming (1973) through a different and lengthy route. From (10) 
we find, noting Pr, = 4, that 

3 lrh/4,  0 < Th s lrh/2&. (11) 

On the other hand, if Th > ?rh/2hE, we have 

P, 2 0 > 1 - 2 h E t / l r  h, t > lr h / 2 h E ,  

from which it again follows that 

hETh > lrh/4,  Th > l r h / 2 h E .  (13) 

hET,,S .rrh/4. (14) 

Joining (11) and (13), we obtain the desired TEUR for a decaying quantum system: 

This is an inequality and clearly shows that a physical time, the half-life, and the ‘root 
mean square’ deviation of energy are related. The fact that the ‘width’ is not a very 
dependable quantity as a measure of the energy spread, despite the experimental 
significance it bears, is understandable from the observation that for a Lorentzian line 
shape, though the width is finite, hE turns out to be infinite, pointing to the ill defined 
nature of the prepared state ( d g D ( H ) ) .  

Fourthly, we can use ( 6 )  to obtain also a lower bound to PI over a time interval 
not contained in (10) as follows. For t s Th, 3s PI S 1, so that the inequality 1 

IdP,/dtl s 2hEPl/h (15) 
holds and this, on integration gives 

(16) -2AEf/h P, 2 e  , OStCTh. 

Thus, for unstable packets with not-too-small lifetimes (i.e. Th > 7rh/2A€), the 
inequality (16) would be useful in studying the small-time behaviour of P, (for a 
discussion, see Ghirardi et a1 (1979)) in the range n h / 2 h E  < t s The 

Fifthly, focusing our attention on the ‘intermediate times’ over which PI is usually 
said to follow an exponential character (Chiu et a1 1977, Fonda et a1 1978), we denote 
by T the time which corresponds to the extremum of the function -In P,/t and find that 

(17) T = (Pr In PT)/dP,/dtlT 

which, by virtue of (6), leads to the inequality 

T 2 ( h / ~ h ~ ) [ - l n  PT(I/Pr- I)-’’~I. 

Understandably, it is only over a region around T where P, would behave in an 
almost-exponential fashion. Noting that the square bracketed part of (18) is bounded 
from above and that for small enough times -In Pt/t = AE2t /h2 ,  coupled with (7), one 
can now make the following remark. If A E  is large, T may be sufficiently small and 
the region over which P, behaves near-exponentially may be small, but, for small AE,  
T would be considerably larger, as would the desired near-exponential region. From 
a detailed analysis, emphasising particularly the preparation of the unstable state, 
Fonda et a1 (1978) arrived at the same conclusion. 
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As an example, let us study the evolution of a one-dimensional Gaussian packet 
in field-free space. Our calculation shows that for the wavefunction 

d ( x )  = ~ - ' / ~ 7 r - ' ' ~  exp (-x2/2a2) 

w (E) = (2m/7r)'/2uh-'E-'/2 exp (-2muZE/h2) 

(19) 
the corresponding energy form-factor w (E) is given by 

(20) 
and the quantum non-decay probability PI turns out to be 

where 

AE = h2/81/2rnu2.  

From (21), we obtain immediately 

AETh = ($)'/'h (23) 
as a manifestation of the TEUR. It may also be seen from (21) that for large times P, 
varies as t-' and not as t - 3  which was expected to be a more-or-less general behaviour 
from the work of Chiu et a1 (1977). For such a packet we have found that the 
near-exponential behaviour prevails around T 1: 21/2h/AE and hence the variation 
of T with A E  is in accordance with our remark towards the end of the preceding 
paragraph. 

Finally, we wish to mention that Fleming (1973) also obtained an uncertainty-type 
relation using (10) and involving the so-called 'average life' of the unstable state. But 
his result is of limited validity, for there can be many unstable quantum states which 
do not possess a finite average life when defined in the way he had chosen (see also 
other references in Fleming (1973)); the example given above is just one of them. 
Once again, this reflects the fact that our classical notions may not always be suitable 
for proper quantum descriptions. 
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